## College Algebra Exam Formulas Sheet

For equalities involving absolute value:

| $\|3 \mathrm{x}+5\|=4$ |  |
| :---: | :---: | :---: |
| becomes |  |
| $3 \mathrm{x}+5=4$ or $3 \mathrm{x}+5=-4$ | $\|3 \mathrm{x}+5\|=0$ <br> becomes <br> (drop)(drop/sign flip)$\|3 \mathrm{x}+5\|=-4$ <br> has |

For inequalities involving absolute value:
...positive, rewrite as a compound or combined inequality without absolute value bars (see examples
below)

| $>$ | $\|3 \mathrm{x}+5\|>4$ | $\|3 \mathrm{x}+5\| \geq 7$ |
| :---: | :---: | :---: |
| or | becomes | becomes |
| $\geq$ | $3 \mathrm{x}+5>4$ or $3 \mathrm{x}+5<-4$ | $3 \mathrm{x}+5 \geq 7$ or $3 \mathrm{x}+5 \leq-7$ |
|  | (drop) $\quad$ (drop/double sign flip) | (drop) $\quad$ (drop/double sign flip) |
| $<$ | $\|3 \mathrm{x}+5\|<9$ | $\|3 \mathrm{x}+5\| \leq 2$ |
| or | becomes the combined inequality | becomes the combined inequality |
| $\leq$ | $-9<3 \mathrm{x}+5<9$ | $-2 \leq 3 \mathrm{x}+5 \leq 2$ |

...zero, rewrite as an equality or inequality, or state the solution as "All Real Numbers" or "No Solution" (see examples below)

| $>$ | $\|3 \mathrm{x}+5\|>0$ | $\|3 \mathrm{x}+5\| \geq 0$ |
| :---: | :---: | :---: |
| or | becomes the inequality | has the solution |
| $\geq$ | $3 \mathrm{x}+5 \neq 0$ | All Real Numbers |
| $<$ | $\|3 \mathrm{x}+5\|<0$ | $\|3 \mathrm{x}+5\| \leq 0$ |
| or | has | becomes the equality |
| $\leq$ | No Solution | $3 \mathrm{x}+5=0$ |

...negative, state the solution as "All Real Numbers" or "No Solution" (see examples below)

| $>$ | $\|3 \mathrm{x}+5\|>-4$ | $\|3 \mathrm{x}+5\| \geq-7$ |
| :---: | :---: | :---: |
| or | has the solution | has the solution |
| $\geq$ | All Real Numbers | All Real Numbers |
| $<$ | $\|3 \mathrm{x}+5\|<-9$ | $\|3 \mathrm{x}+5\| \leq-2$ |
| or | has | has |
| $\leq$ | No Solution | No Solution |

The distance between two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

The midpoint of the line segment whose endpoints are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the point with coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Some equation forms of a line:
$y=m x+b$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
A x+B y=C
$$

Given a line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the slope $m$ of the line is $m=\frac{r i s e}{r u n}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ as long as $x_{2} \neq x_{1}$

The average rate of change of a function from $a$ to $b$ is $\frac{f(b)-f(a)}{b-a}$

The vertex form of a parabola is $y=f(x)=a(x-h)^{2}+k$
The standard form of a parabola is $y=a x^{2}+b x+c$
The vertex of a parabola in standard form is the point $\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)$

The Law of Exponents:
Given $a>0$ with $a \neq 1$ : If $a^{u}=a^{v}$, then $u=v$.

## SUMMARY Properties of Logarithms

In the list that follows, $a, b, M, N$, and $r$ are real numbers. Also, $a>0, a \neq 1, b>0, b \neq 1, M>0$, and $N>0$.
Definition

$$
\begin{array}{ll}
y=\log _{a} x \text { means } x=a^{y} & \\
\log _{a} 1=0 ; \quad \log _{a} a=1 & \log _{a} M^{r}=r \log _{a} M \\
a^{\log _{a} M}=M ; \quad \log _{a} a^{r}=r & a^{x}=e^{x \ln a} \\
\log _{a}(M N)=\log _{a} M+\log _{a} N & \text { If } M=N, \text { then } \log _{a} M=\log _{a} N . \\
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N & \text { If } \log _{a} M=\log _{a} N, \text { then } M=N .
\end{array}
$$

Properties of logarithms

Change-of-Base Formula

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

The compound interest formula states that $F=P\left(1+\frac{r}{n}\right)^{n t}$

The continuously compounded interest formula states that $F=P e^{r t}$
The exponential law states that an amount $A$ varies with time $t$ according to the function $A(t)=A_{0} e^{k t}$ As long as the start time is 0 , the value of $k$ can be determined using the adder $a$ and either the multiplier $m$ or the divider $d$ :

$$
k=\frac{\ln m}{a} \quad \text { or } \quad k=\frac{\ln (1 / d)}{a}
$$

