College Algebra Exam Formulas Sheet

For equalities involving absolute value:

3x + 5 = 4	3x + 5 = 0	3x + 5 = -4
becomes	becomes	has
3x + 5 = 4 or $3x + 5 = -4$	3x + 5 = 0	No Solution
(drop) (drop/sign flip)		

For inequalities involving absolute value:

...**positive**, rewrite as a compound or combined inequality without absolute value bars (see examples below)

>	3x + 5 > 4	$ 3x+5 \ge 7$
or	becomes	becomes
≥	3x + 5 > 4 or $3x + 5 < -4$	$3x + 5 \ge 7 \text{ or } 3x + 5 \le -7$
	(drop) (drop/double sign flip)	(drop) (drop/double sign flip)
<	3x + 5 < 9	$ 3x + 5 \le 2$
or	becomes the combined inequality	becomes the combined inequality
≤	-9 < 3x + 5 < 9	$-2 \le 3x + 5 \le 2$

...zero, rewrite as an equality or inequality, or state the solution as "All Real Numbers" or "No Solution" (see examples below)

>	3x + 5 > 0	$ 3x + 5 \ge 0$
or	becomes the inequality	has the solution
≥	$3x + 5 \neq 0$	All Real Numbers
<	3x + 5 < 0	$ 3x + 5 \le 0$
or	has	becomes the equality
≤	No Solution	3x + 5 = 0

...negative, state the solution as "All Real Numbers" or "No Solution" (see examples below)

-	•	, , ,
>	3x + 5 > -4	$ 3x + 5 \ge -7$
or	has the solution	has the solution
≥	All Real Numbers	All Real Numbers
<	3x + 5 < -9	$ 3x+5 \le -2$
or	has	has
≤	No Solution	No Solution

The distance between two points, (x_1, y_1) and (x_2, y_2) , is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The midpoint of the line segment whose endpoints are (x_1, y_1) and (x_2, y_2) is the point with coordinates $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Some equation forms of a line:

$$y = mx + b y - y_1 = m(x - x_1) Ax + By = C$$

Given a line passing through points (x_1, y_1) and (x_2, y_2) , the slope m of the line is $m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$ as long as $x_2 \neq x_1$

The average rate of change of a function from a to b is $\frac{f(b)-f(a)}{b-a}$

The vertex form of a parabola is $y = f(x) = a(x - h)^2 + k$

The standard form of a parabola is $y = ax^2 + bx + c$

The vertex of a parabola in standard form is the point $\left(-\frac{b}{2a},\ c-\frac{b^2}{4a}\right)$

The Law of Exponents:

Given a > 0 with $a \ne 1$: If $a^u = a^v$, then u = v.

SUMMARY Properties of Logarithms

In the list that follows, a, b, M, N, and r are real numbers. Also, a > 0, $a \ne 1$, b > 0, $b \ne 1$, M > 0, and N > 0.

Definition
$$y = \log_a x \text{ means } x = a^y$$

Properties of logarithms
$$\log_a 1 = 0$$
; $\log_a a = 1$ $\log_a M^r = r \log_a M$

$$a^{\log_a M} = M; \quad \log_a a^r = r$$
 $a^x = e^{x \ln a}$

$$\log_a(MN) = \log_a M + \log_a N$$
 If $M = N$, then $\log_a M = \log_a N$.

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \qquad \qquad \text{If } \log_a M = \log_a N, \text{ then } M = N.$$

Change-of-Base Formula
$$\log_a M = \frac{\log_b M}{\log_b a}$$

The compound interest formula states that $F = P \left(1 + \frac{r}{n}\right)^{nt}$

The continuously compounded interest formula states that $F = Pe^{rt}$

The exponential law states that an amount A varies with time t according to the function $A(t) = A_0 e^{kt}$ As long as the start time is 0, the value of k can be determined using the adder a and either the multiplier m or the divider d:

$$k = \frac{\ln m}{a}$$
 or $k = \frac{\ln(1/d)}{a}$